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Motivation: Renewable-dominated power systems

Source: Wikipedia (left) PNNL (right)

Desired controller features
@ data-driven, minimal plant information requirement

@ low-complexity, robust

Disturbance example

@ gen./load imbalance causing frequency deviation from nominal value (60Hz)
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Introduction: output regulation

lw

Plant

Controller

@ Stable LTI plant subject to exogenous disturbance w and control input u J

@ Dynamic controller with measurement error e as input

Objective: track reference and reject disturbance
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A very brief history of output regulation

Linear systems
@ Davison '72: feedforward measurable disturbance rejection
@ Francis & Wonham '76: the internal model principle

@ Davison '76: robust output regulation, multivariable tuning regulator for
unknown MIMO systems

@ Marino & Tomei '03, '14, '17: adaptive controller for SISO (discrete-time)
unknown plant 4+ known/unknown exosystem

@ Wang & Davison & Davison '12, '13: discrete-time unknown plant +
constant disturbance with input saturation

Nonlinear systems
@ Isidori & Byrnes '90: nonlinear extension of Francis & Wonham '76 result
@ Serrani, Isidori & Marconi '01: nonlinear system -+ unknown linear exosystem
@ Huang & Chen '04, '05: robust nonlinear output regulation

and many more...
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The Multivariable Tuning Regulator (Davison '76)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, FEBRUARY 1976 35

Multivariable Tuning Regulators:
The Feedforward and Robust Control
of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, IEEE
Problem setup
W = SW —t
. eig(S) cC
x =Ax+ Bu+ B,w A c
ei cC™
e=Cx+Du+ D,w ig (4)

Available information
@ Minimal polynomial of exosystem
ps(s) = s(s® +wi) - (s + wp)
e Frequency response: for k € {0,1,...,¢}
P(jwi) = C(jwr! — A)*B+ D
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Architecture of Davison's Tuning Regulator

Controller structure

Nk = Prnk + G
Ck :
U = —€xFrmi

o (g, Gk): internal model for the k-th
disturbance frequency component

@ Fi: control gain, computed based on
(closed-loop) freq. response data Ce

Uyp

@ €, tuning parameters

Each F, depends on re-identifying the frequency response of the previous
closed-loop system {P,Cy,...,Cx_1} = impractical if w is complex
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The Single-Gain Tuning Regulator

To address the drawbacks of Davison's design...

@ controller gain computed with open-loop frequency-response data

@ can be tuned with a single tuning parameter ¢

n=®n+ Ge
u=—F(e)n

SGTR :

e (®, G): internal model stacked
from (q)k, Gk)

e Gain F: cont. matrix-valued
mapping, O(e) as € — 07

w = Sw
w
U & = Az + Bu+ B,w e

e=Czx+ Du+ D,w

u=—F(e)n

n=&n+ Ge
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The SGTR: Objective

Construct controller gain F(¢) to achieve CLS stability*
@ Adjusting € corresponds to (proportionally) changing the dominant CLS pole

@ Definition: A(e) is low-gain Hurwitz stable (LGHS) if there exist
constants ¢, e* > 0 such that for all € € [0, €*),

max  Re[\] < —ce
Aeeig(A(e))

; ; Im(s),
Objective y ;
Show that the closed-loop matrix %
J[A  —BF(e |
A= 1ec o 6pF(e) : )
is low-gain Hurwitz stable
X 1
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Certifying CLS LGHS: coordinate transformation

Coordinate transformation with Sylvester operator

o Define x’ £ x — INM(¢)n, where M(e) solves the Sylvester equation
Syl¢7A(ﬂ(e)) £ M(e)® — All(e) = —BF(¢)

Note: Squ_,’lA always exists since eig (A) C C~ and eig (®) C c
o Define A,cq(€) = ® — GZ(F(¢)), where

Z(F(e)) & —CN(e) + DF(e) = CSylg'4(BF(€)) + DF (e)

is the steady-state loop gain (SSLG) operator

Lemma (Reduction of closed-loop stability analysis)

A—TI(e)GC T(e)GZ(F(e))

Ared(€) is LGHS = A(e) = e Aa(e)

is LGHS
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Observations for controller gain design

o Aica(e) £ & — GZL(F(e€)) looks like “A — BK(e)"
Idea: Design Z(¢) = .Z(F(¢)) using, e.g., pole placement

@ Need to recover F(e) for all stabilizing intermediary gain Z(e)
Idea: The SSLG operator .Z needs to be surjective

o Fact: .Z is surjective if the non-resonance condition holds: V € eig (S),
A-)Xl, B
C D

Idea: If the non-resonance condition holds, then there exists a SGTR gain for
the closed-loop system to be LGHS

rank[ ]:n—l—r

v

e Problem: .Z(F(e)) = —CT(e) + DF(€) = CSyly's(BF(€)) + DF(€) depends
on the unknown (A, B, C, D)!
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(Almost) model-free construction of ¥

Theorem (Equivalent construction of SSLG operator)

The SSLG operator £ can be alternatively constructed as

4
ZL(F) = P0)FXo+2> Re{P(juwr)F X}
k=1

@ The matrices {X} for k € {0,1,...,¢} are constructed from the
eigen-decomposition of ¢ (recall ® = ¢ ® I,)

@ Only depends on the open-loop freq. response and ps(s), not the plant info
(A7 Ba Ca D7 BW? DW)

@ A linear matrix equation in F(e) if LHS is designed; can be reformulated to
isolate F(e€) using Kronecker product identities
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The SGTR: Summary

w = Sw
w
U T = Ax + Bu + B,w e

e=Cx+ Du+ Dyw

u=—F(e)n n=®n+ Ge

Design procedure
o Measure/estimate {P(jwyi)}, the freq. response data at the exosystem modes
@ Design Z(e) = .Z(F(¢)) using, e.g., pole placement, H., state-feedback

@ Tune € > 0 and solve linear matrix equation in F(e) for performance
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Simulation & comparison against Davison's design

Four-tank process (Johansson e}
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. 54l
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Conclusion

This paper

e Data-driven output regulator using s

w = ow

frequency response data
w
@ Easy to tune and implement
m & = Ax + Bu+ Byw e

@ Improvement of classical tuning regulator e = Ca+ Du+ Dyw

u=—F(e)n

n=&n+Ge

Ongoing work

@ Reduced-model based optimal & robust design

Application: Power system load frequency control

@ Discrete-time system extension: Focus on |/O data

Incorporating feedforward + PID analogue

Generalizing the SGTR to contractive systems
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Questions



Appendix: Interpretation of the SSLG operator .

@ Small tuning parameter € induces timescale separation

@ Use reduced model to focus on the long term behavior; a candidate is

7;] = Ared(e)n + Ggww
e=—-YL(F(e))n+ Luw

Z(F(e)) is the steady-state model of the plant on the  — e channel
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