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Motivation: Renewable-dominated power systems

Source: Wikipedia (left) PNNL (right)

:

Desired controller features

data-driven, minimal plant information requirement

low-complexity, robust

Disturbance example

gen./load imbalance causing frequency deviation from nominal value (60Hz)
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Introduction: output regulation

Controller

Plant

u

w

e

Stable LTI plant subject to exogenous disturbance w and control input u

Dynamic controller with measurement error e as input

Objective: track reference and reject disturbance
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A very brief history of output regulation

Linear systems

Davison ’72: feedforward measurable disturbance rejection

Francis & Wonham ’76: the internal model principle

Davison ’76: robust output regulation, multivariable tuning regulator for

unknown MIMO systems

Marino & Tomei ’03, ’14, ’17: adaptive controller for SISO (discrete-time)

unknown plant + known/unknown exosystem

Wang & Davison & Davison ’12, ’13: discrete-time unknown plant +

constant disturbance with input saturation

Nonlinear systems

Isidori & Byrnes ’90: nonlinear extension of Francis & Wonham ’76 result

Serrani, Isidori & Marconi ’01: nonlinear system + unknown linear exosystem

Huang & Chen ’04, ’05: robust nonlinear output regulation

and many more...
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The Multivariable Tuning Regulator (Davison ’76)

Problem setup

ẇ = Sw

ẋ = Ax + Bu + Bww

e = Cx + Du + Dww

eig (S) ⊂ C+

eig (A) ⊂ C−

Available information

Minimal polynomial of exosystem

µS(s) = s(s2 + ω2
1) · · · (s2 + ω2

ℓ )

Frequency response: for k ∈ {0, 1, . . . , ℓ}
P̂( jωk) = C ( jωk I − A)−1B + D
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Architecture of Davison’s Tuning Regulator

Controller structure

Ck :
η̇k = Φkηk + Gk

uk = −ϵkFkηk

(Φk ,Gk): internal model for the k-th

disturbance frequency component

Fk : control gain, computed based on

(closed-loop) freq. response data

ϵk : tuning parameters

PC0

C1

C`

ẇ = Sw

w

u0

u1

u`

u e

...

Each Fk depends on re-identifying the frequency response of the previous

closed-loop system {P, C0, . . . , Ck−1} =⇒ impractical if w is complex
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The Single-Gain Tuning Regulator

To address the drawbacks of Davison’s design...

controller gain computed with open-loop frequency-response data

can be tuned with a single tuning parameter ϵ

SGTR :
η̇ = Φη + Ge

u = −F (ϵ)η

(Φ,G ): internal model stacked

from (Φk ,Gk)

Gain F : cont. matrix-valued

mapping, O(ϵ) as ϵ → 0+ η̇ = Φη +Geu = −F (ϵ)η

ẋ = Ax+Bu+Bww

e = Cx+Du+Dww

ẇ = Sw

e

η

u

w
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The SGTR: Objective

Construct controller gain F (ϵ) to achieve CLS stability*

Adjusting ϵ corresponds to (proportionally) changing the dominant CLS pole

Definition: A(ϵ) is low-gain Hurwitz stable (LGHS) if there exist

constants c , ϵ⋆ > 0 such that for all ϵ ∈ [0, ϵ⋆),

max
λ∈eig(A(ϵ))

Re[λ] ≤ −cϵ

Objective

Show that the closed-loop matrix

A(ϵ) ≜

[
A −BF (ϵ)

GC Φ− GDF (ϵ)

]
is low-gain Hurwitz stable

−cϵ

×

×

×

×

×

×
Re(s)

Im(s)
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Certifying CLS LGHS: coordinate transformation

Coordinate transformation with Sylvester operator

Define x ′ ≜ x − Π(ϵ)η, where Π(ϵ) solves the Sylvester equation

SylΦ,A(Π(ϵ)) ≜ Π(ϵ)Φ− AΠ(ϵ) = −BF (ϵ)

Note: Syl−1
Φ,A always exists since eig (A) ⊂ C− and eig (Φ) ⊂ C+

Define Ared(ϵ) ≜ Φ− GL (F (ϵ)), where

L (F (ϵ)) ≜ −CΠ(ϵ) + DF (ϵ) = CSyl−1
Φ,A(BF (ϵ)) + DF (ϵ)

is the steady-state loop gain (SSLG) operator

Lemma (Reduction of closed-loop stability analysis)

Ared(ϵ) is LGHS =⇒ Ã(ϵ) =

[
A− Π(ϵ)GC Π(ϵ)GL (F (ϵ))

GC Ared(ϵ)

]
is LGHS
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Observations for controller gain design

Ared(ϵ) ≜ Φ− GL (F (ϵ)) looks like “A− BK (ϵ)”

Idea: Design Z (ϵ) = L (F (ϵ)) using, e.g., pole placement

Need to recover F (ϵ) for all stabilizing intermediary gain Z (ϵ)

Idea: The SSLG operator L needs to be surjective

Fact: L is surjective if the non-resonance condition holds: ∀λ ∈ eig (S),

rank

[
A− λIn B

C D

]
= n + r

Idea: If the non-resonance condition holds, then there exists a SGTR gain for

the closed-loop system to be LGHS

Problem: L (F (ϵ)) = −CΠ(ϵ) + DF (ϵ) = CSyl−1
Φ,A(BF (ϵ)) + DF (ϵ) depends

on the unknown (A,B,C ,D)!
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(Almost) model-free construction of L

Theorem (Equivalent construction of SSLG operator)

The SSLG operator L can be alternatively constructed as

L (F ) = P̂(0)FX 0 + 2
ℓ∑

k=1

Re{P̂( jωk)FX k}

The matrices {X k} for k ∈ {0, 1, . . . , ℓ} are constructed from the

eigen-decomposition of ϕ (recall Φ = ϕ⊗ Ir )

Only depends on the open-loop freq. response and µS(s), not the plant info

(A,B,C ,D,Bw ,Dw )

A linear matrix equation in F (ϵ) if LHS is designed; can be reformulated to

isolate F (ϵ) using Kronecker product identities
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The SGTR: Summary

η̇ = Φη +Geu = −F (ϵ)η

ẋ = Ax+Bu+Bww

e = Cx+Du+Dww

ẇ = Sw

e

η

u

w

Design procedure

Measure/estimate {P̂( jωk)}, the freq. response data at the exosystem modes

Design Z (ϵ) = L (F (ϵ)) using, e.g., pole placement, H∞ state-feedback

Tune ϵ > 0 and solve linear matrix equation in F (ϵ) for performance
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Simulation & comparison against Davison’s design
Four-tank process (Johansson

TCST ’00)

Disturbance: external water

flow into Tank 4

JOHANSSON: THE QUADRUPLE-TANK PROCESS: A MULTIVARIABLE LABORATORY PROCESS WITH AN ADJUSTABLE ZERO 457

Fig. 1. The quadruple-tank process shown together with a controller interface running on a PC.

A schematic diagram of the process is shown in Fig. 2. The
target is to control the level in the lower two tanks with two
pumps. The process inputs areand (input voltages to the
pumps) and the outputs areand (voltages from level mea-
surement devices). Mass balances and Bernoulli’s law yield

(1)

where
cross-section of Tank;
cross-section of the outlet hole;
water level.

The voltage applied to Pumpis and the corresponding flow
is . The parameters are determined from
how the valves are set prior to an experiment. The flow to Tank 1
is and the flow to Tank 4 is and similarly
for Tank 2 and Tank 3. The acceleration of gravity is denoted.
The measured level signals are and . The parameter
values of the laboratory process are given in the following table:

The model and control of the quadruple-tank process are studied
at two operating points: at which the system will be shown to

Fig. 2. Schematic diagram of the quadruple-tank process. The water levels
in Tanks 1 and 2 are controlled by two pumps. The positions of the valves
determine the location of a multivariable zero for the linearized model. The zero
can be put in either the left or the right half-plane.

have minimum-phase characteristics andat which it will be
shown to have nonminimum-phase characteristics. The chosen
operating points correspond to the following parameter values:
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Conclusion

This paper

Data-driven output regulator using

frequency response data

Easy to tune and implement

Improvement of classical tuning regulator

η̇ = Φη +Geu = −F (ϵ)η

ẋ = Ax+Bu+Bww

e = Cx+Du+Dww

ẇ = Sw

e

η

u

w

Ongoing work

Reduced-model based optimal & robust design

Application: Power system load frequency control

Discrete-time system extension: Focus on I/O data

Incorporating feedforward + PID analogue

Generalizing the SGTR to contractive systems
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Questions
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Appendix: Interpretation of the SSLG operator L

Small tuning parameter ϵ induces timescale separation

Use reduced model to focus on the long term behavior; a candidate is

η̇ = Ared(ϵ)η + GLww

e = −L (F (ϵ))η + Lww

L (F (ϵ)) is the steady-state model of the plant on the η → e channel
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