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Background

The AC power flow problem
Given a balanced three-phase transmission system at steady-state, compute the

bus voltage phasors such that total power generation = total load demand +

losses.

@ Formulated by a set of nonlinear equations known as the power flow equations

Standard algorithm: Newton-Raphson
@ Advantages: simple to implement, fast (quadratic convergence rate)

o Disadvantages: extremely sensitive to initial condition choice, limited
theoretical guarantee of convergence

Alternative: fixed-point algorithms
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Motivation

Origin of the proposed algorithm: the lossless fixed-point power flow (FPPF)
and lossy DC power flow (L-DCPF) [5]-[7]:

o reformulate the power flow equations from the standard g(£§) = 0 form into

an equivalent fixed-point form & = f(§)
@ start from a &, iteratively compute &1 = (&) until [[Exr1 — &kl < €

@ One example of many other fixed-point based solvability studies/algorithms

Properties of FPPF and L-DCPF:
@ highly robust with theoretical guarantees for select system topologies

@ restricted to the following simplified contexts

» FPPF: lossless power flow

» L-DCPF: decoupled active power flow

@ Neither accounts for the existence of nonzero transformer phase-shifts or the
distributed slack bus model
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Objectives

Practically...

Derive a fixed-point algorithm for the full AC power flow problem, i.e., with loss,

coupling and other transmission system parameters
o fewer simplifying assumptions

@ more useful algorithm

Theoretically...

The fixed-point algorithm should allow us to derive sufficient conditions for the

existence and uniqueness of the desired power flow solution
@ Starting point: 2-bus system (V)
o Next: radial systems (X)

@ Finally: meshed systems (X)
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Graph modelling of an AC transmission system

Weakly connected bidirected graph es €2

@ each node models a bus es

€6 NL

» N = N UNGg: the set of buses \ €l
> Nif=nand [Ng|=m “ @\ef‘ ‘

@ each edge models a branch

> [l-model + transformer
» E=EXUEELUESE: theset of | hree important graph matrices

edges @ incidence matrix
@ weak connectivity => number of A€ {-1,0,1}{rrm)x|#l
cycles nc = |€] — (n+ m —1) o cycle matrix C € {—1,0,1}&1xne
@ possibly different forward and @ asymmetrically weighted
backward edge weights w™, w™ incidence matrix I € R(+m)x[€]

@ important property: AC =0
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(phase-shifting) transformer + IN-model

Why asymmetrical edge weights
For the general system with n + m buses...
o We get the Gj;, Bjj from the off-diagonal entries of Y = G + jB

o Nonzero phase-shift = 7; # 77 = G; # Gj and B; # B

@ Asymmetry —> need the [ matrix
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The AC Power Flow Problem

The Power Flow Equations w./ Distributed Slack Bus

j=1
Q= > (G0 1) (VBess—0) ie N
j=1

Known Variables Unknown Variables
@ Power injection: P; Vi e N and o Bus voltage phase: ¢; Vi e N'
Qi VieN, @ Load voltage mag.: V; Vi e N}
o Participation factor: «; Vi € N @ Gen. reactive power injection:
o Gen. voltage mag.: V; Vi € Ng Qi VieNg
e Admittance: G; + jB; V(i,j) € 5) @ Total network loss: Pgack > 0
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Vectorizing the Power Flow Equations |: Voltage Products

Partitioned variables Open-circuit voltage magnitude
Vi %5
V= VP =-B;'BigVs, Vo=t
[ VG ] L LL PLGVG VG
BiL | Bie : ,
B =Im{Y} = Normalized voltage magnitudes
Bei | Bse
~ v
V= VIV glv) = L ]

Handling voltage products V;V; using the incidence matrix A
Let A= AT — A~. For all forward edge (i,j) € &,
viv; if (i,j) € E¥
hin(v)i=4 v i) ees = hv)=[(A) e(v)] (A7) a(v)
1 if(i,j) € &ee
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Vectorizing the Power Flow Equations |I: Admittance

o Nonzero transformer phase-shiftt = Gj; # G;i, Bj # Bji

o Need to incorporate both Gj, Gji and Bjj, Bji depending on whether (i, ) or

(J, 1) is the forward edge

Branch stiffness matrices

D5 = [VP V7 Gl pee
D’=U¢W1&ma
Dg = [V V7 Bi s jyee
Dg = [\/IO J’](,,J)eg

v

Branch quantity to bus quantity
g = A*Df — A~ D
6= A*Df — A~D;

Handling V;V;G;, V;V;Bj; products

[ViV;Gil s jyee = DELM(V)]
[ViViBslsee = Dalh(v)]
[ViViGiljyee = D5 h(v)]
[ViV;Bjili jyee = Dg [h(v)]

ITg| = ATD} + A~ Dg
Il :=ATD{ + A~ Dg
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Vectorizing the Power Flow Equations IlI

Handling the sinusoidal terms
o Branch-wise phase difference §; — §; = vectorized by AT¢

e cos(f; — 0;) = cos(AT0) , sin(¢; — 6;) = sin(AT0) (!)

Handling the loss Pyacx
@ Known participation factors o; >0, Vi e N

o= 0 — 3R ¢ R(m+m)x(ntm=1) ¢, rank(R)=n+m—1
agG RTO[ = O

Vectorized Power Flow Equations
RTP = RT[V°][g(MI[Gil[V°]g(v) Mg = R'Tg
+ RT|Ig|[h(v)]cos(AT) +Mglh(v)]sin(ATH)
Q= —[VZIVI[Bile[V]v + T [h(v)]sin(AT6) — [T, |[h(v)]cos(AT6)
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Fixed-Point Reformulation I: Active Power Flow Eq's

Change of variables

o ¢ :=sin(AT0) = cos(AT0) = /1 - [¢]v =17

@ Must have |||/ <1

Vectorized active power flow equation
RTP = RT ([V°]lg(MIIGil[V°]g(v) + [T|lh(v)]n) + Mg[h(v)]v

Lemma 4.1

If all off-diagonal entries of B are strictly positive (Asm. 2.2), then Mg has a right
inverse M}; such that MB/\/I; = 1.

Fixed-point active power flow equation

¥ =[] MERT (P — [V°][g(]IIG[V°1g(v) — IT6l[h(v)In) + [A(v)] " Kxc
particular soln. hom. soln.

@ 1 is a function of v,n and x.
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Fixed-Point Reformulation Il: Loop Flow Constraint

To recover 6 from 1):

Y = sin(AT6) = sin(AT0 + 21k), k € Z
Key property of the cycle matrix C:

AC=0 = C"AT9 = CTarcsin(y)) =0
Consequence: loop flow constraint

CTarcsin(z)) mod 27 = 0

The cycle slack variable x. in @) must satisfy this constraint!

Solving for x.
o Constraint already in root-finding form

o Newton-Raphson: x+1 = xk — (Jé‘)f1 CTarcsin(v)
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Fixed-Point Reformulation Ill: Reactive Power Flow Eq'’s

Vectorized reactive power flow equation | Nodal Stiffness Matrix
Qu = —[VZIVBALIVEv + Fa [A(v)]w 5= 21V{1Bul V]
— [T, |[A(v)]n

o 1= I- ¥

@ (Asm. 2.1) By, invertible

@ S invertible

Consequence of Lemma 4.2
—[VCIVIBil [Vl — [Tal[A(v)]1L)e) = 4[v]S(1n — v)

Fixed-point reactive power flow equation

vo1,- %S_l[v]_l (Qu = T[] — e [A(V)] (Lig) = n))
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Fixed-Point Reformulation IV: Main Result
Theorem 4.1

If Assumptions 2.1-2.2 hold, then the following statements are equivalent:

e (V,0) solves the vectorized power flow equations
RTP = RT[V°][g(MI[Gil[V°]g(v)
+ Rl 6|[h(v)]cos(AT) + Mg[h(v)]sin(AT)
Q= [V IVIBilL [V v + T [h(v)]sin(AT8) — [T, |[h(v)]cos(ATH)

o (v, 1, x.) satisfy /> Fixed-point eq's for (v, )

V=1, 7S (Q T Al M 1) (e — )

= [h(V)] " MERT (P — [Vollg(MI[GAIV°1e(v) — [T6l[h(v)In)

+ [h(v)] 'K

[0,,6 = CTarcsin(z)) mod 27r]\
where 1 = /1 — [¢]¢.

Loop-flow constraint for x.
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Two-Bus Power Flow I: Preliminaries

Vo = 1320 Vi =ViZ6;  Two-bus system constants

@ I I ot =t—1 o p=g/b

__ gcosfs — bsin

Bus 2 Bus 1 °g=="—7—1 °/i=8&/b
One-line diagram of the two-bus o b— bcos 95 +gsinfs o Ap = = P
system; transformer tap ratio t+1 bvlo V2O
7 = texp (jfs) and transmission o bh=b— E ® Yo = = &
line parameters g, b, b not shown 2 bvyVy

FPPF algorithm update rule

Ekr1 = Fu(ée) =

_ﬁP o= — 2

Xk+1+p(x;<+1) P 1—2 :V,(H]:l Vra 1
'NYQ = a2

%+ 1 Pkt1 + \/ 1 ¢k+1 1

o Perturbation vector u=1[g b, t GS]T

Xk+1 Vg1 — 1
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Two-Bus Power Flow II: The Nominal Case (u = 0)

Loading margin and constants FPPF update rule
° Jp, Y@ = TP V@ ou=0:F, = Fo
o Asm. 52: 0 <73 — 70 < 5 o
= CxF1
o ky =1—y/ dtqg+/i+yg—n2 | Sk = ,
R
k+1
- 5 X+ 1

o k]_ = ——

L=19 Fo(&k)

’ v
X

Nominal system results
(Theorems 5.1-5.2, Corollary 5.1) k
If Asm. 5.2 holds, then

o A= ={¢: Y| < ki ,|x| < k; }is Fo-invariant

N o

@ Fp is a contraction on A~

o High-voltage soln.: &+ = [kT — k" € A~

/ &t
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Two-Bus Power Flow IlI: The Full Case (i 7& 0)

k? + 62
The F,-invariant set A~ . A-
o Constructed using A~ with additional 2
constants € = (e1,€2) >0 A
A = {6 1] < K e x| < K5 e} 4
k; kf-+€1

@ Propositions 5.1-5.2: if p is sufficiently

small, then there exists € > 0 such that

A_ is F,-invariant

€

Full system results

For sufficiently small u, Fo is a contraction on AZ, so
@ the unique high-voltage soln. is in A

o FPPF always converges to this soln. from any & € A~
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Numerical Results |: Convergence
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Numerical Results |: Convergence

Number of iterations required for convergence

Base loading High loading
Test case NR FDLF FPPF NR FDLF FPPF
9 bus system 4 6 8 5 29 22
30 bus system 3 11 18 6 28 22
PEGASE 89 4 9 10 6 26 23
118 bus system 4 11 11 6 33 25
300 bus system 5 15 33 6 33 33
PEGASE 1354 5 11 42 5 25 42
RTE 1888 / 61 33 / 76 33
RTE 1951 / 55 32 / 58 32
RTE 2868 / 49 43 / 46 44
PEGASE 2869 5 11 42 6 29 42
PEGASE 9241 6 17 46 6 23 47
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Numerical Results Il: Effect of R/X Ratio

System data: distribution of branch R/X ratios
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@ 300 bus system: 3 out of 411 total branches
o PEGASE 2869 system: 5 out of 4582 total branches
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R/X ratio

PEGASE 2869 bus system
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Numerical Results Il: Effect of R/X Ratio
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@ lterations required to converge 1 as R/X ratio cap 1

@ Algorithm fails when the cap is too high (1.00 for 300 bus system and 1.01
for 2869 bus system)
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Numerical Results IlI: Sensitivity to Initialization

e Goal: test algorithm success rate (%) under random initial load bus voltage
magnitudes, generated uniformly from [1 — 4,1 + 4]

@ Higher success rate as § increases = more robust

Success Rate (%)

100 [ g

80

60 -

401

20+

0.1 02 03 04 05 0.7 0.9 095
IC Spread (9)

R
[ FDLF
[ FPPF

30 bus system, high loading

Success Rate (%)

100 g

80

60 -

40+

20+

01 02 03 04 05 0.7 09 0.95

IC Spread (9)

R
[ FDLF
[ FPPF
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Conclusions

A new fixed-point algorithm for the AC power flow problem
@ Extends the lossless FPPF & L-DCPF algorithms in the literature
@ Allows phase-shifting transformers & distributed slack bus setup in the system

@ More robust against initial voltage magnitude variations than NR, FDLF

A framework to study the solvability of the full power flow equations
@ Bidirected graph model accomodates realistic transmission line and
transformer parameters
o Sufficient conditions for two-bus power flow solvability, using the language of

invariance sets and contraction mapping
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Future Work

Practically
@ Optimize the implementation of the algorithm

o Further investigate the effect of high branch R/X ratio on the algorithm

convergence/divergence

@ Investigate the causes of the ||1|| < 1 constraint violation

Theoretically
@ Potentially revise the fixed-point reformulation to explicitly include R/X
information
@ Generalize the two-bus power flow solvability conditions to N-bus systems

@ Produce tighter and/or constructive sufficient solvability conditions for the

two-bus power flow problem

25/28



The End

Thank you!
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