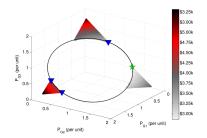
A Fixed-Point Algorithm for the AC Power Flow Problem

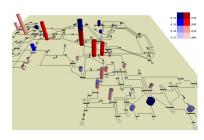
Liangjie (Jeffrey) Chen, John W. Simpson-Porco

American Control Conference June 2, 2023

Background



Optimal power flow (Molzahn '17)



Contingency analysis (Sun & Overbye '04)

Fixed-point power flow algorithms in recent years

• Reformulate the standard $g(\xi)=\mathbb{O}$ form of power flow equations into an equivalent fixed-point form $\xi=f(\xi)$

Background

Advantages

- More robust against loading profile and initial condition variations
- Naturally lead to contraction-based algorithm convergence analysis

Contribution

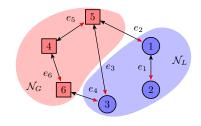
Extension of the lossless *Fixed-Point Power Flow* algorithm in the literature (JWSP '18) to include

- transmission line resistive losses
- phase-shifting transformers
- distributed slack buses in the network

Graph Modelling of an AC Transmission System

Weakly connected bidirected graph

- Each node $i \in \mathcal{N}$ models a bus
 - $\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G$: the set of buses
 - ▶ $|\mathcal{N}_L| = n$ and $|\mathcal{N}_G| = m$
- Each edge $k \in \mathcal{E}$ models a branch
 - ► Π-model + transformer



Asymmetrically Weighted Incidence Matrix Γ

- Related to the the standard incidence matrix A
- Row $i \Longrightarrow \text{bus } i \in \mathcal{N}$; Column $k \Longrightarrow \text{branch } k \in \mathcal{E}$
- Γ_{ik} , Γ_{ik} represent the connection between buses i and j via the branch k
- Elements weighted by the conductance G and susceptance B (need separate Γ 's for each)

The Power Flow Equations

The power flow equations with distributed slack bus

$$\bar{P}_i + \alpha_i P_{\text{slack}} = \sum_{j=1}^{n+m} V_i V_j G_{ij} \cos(\theta_i - \theta_j) + V_i V_j B_{ij} \sin(\theta_i - \theta_j) \qquad i \in \mathcal{N}$$

$$Q_i = \sum_{j=1}^{n+m} V_i V_j G_{ij} \sin(\theta_i - \theta_j) - V_i V_j B_{ij} \cos(\theta_i - \theta_j) \qquad i \in \mathcal{N}_L$$

change of variable
$$\psi \coloneqq \sin\left(A^{\mathsf{T}}\theta\right)$$

The equivalent fixed-point reformulation

$$R^{\mathsf{T}}\bar{P} = R^{\mathsf{T}}[V^{\circ}][g(v)][G_{ii}][V^{\circ}]g(v) + R^{\mathsf{T}}|\Gamma_{G}|[h(v)]\sqrt{1 - [\psi]\psi} + M_{B}[h(v)]\psi$$

$$Q_{L} = -[V_{L}^{\circ}][v][B_{ii}]_{L}[V_{L}^{\circ}]v + \Gamma_{G_{L}}[h(v)]\psi - |\Gamma_{B_{L}}|[h(v)]\sqrt{1 - [\psi]\psi}$$

The Proposed Fixed-Point Algorithm

return $\psi[k+1]$, v[k+1]

Re-arranging the fixed-point reformulations...

$$v = \mathbb{1}_n - \frac{1}{4} S^{-1}[v]^{-1} \left(Q_L - \Gamma_{G_L}[h(v)]\psi - |\Gamma_{B_L}|[h(v)] \left(\mathbb{1}_{|\mathcal{E}|} - \eta \right) \right)$$
 (1)

$$\psi = [h(v)]^{-1} \left(M_B^{\dagger} R^{\mathsf{T}} \left(\bar{P} - [V^{\circ}][g(v)][G_{ii}][V^{\circ}]g(v) - |\Gamma_G|[h(v)]\eta \right) + Kx_c \right)$$
(2)

$$\mathbb{O}_{n_c} = C^{\mathsf{T}} \operatorname{arcsin}(\psi) \bmod 2\pi \tag{3}$$

Algorithm The extended fixed-point power flow algorithm

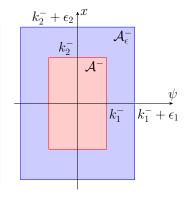
```
\begin{split} v[0] &\leftarrow V_L/V_L^\circ \ , \ \psi[0] \leftarrow \sin(A^\mathsf{T}\theta) \ , \ x_c[0] \leftarrow \mathbb{O}_{n_c}, \ k \leftarrow 0 \\ \textbf{while} \ \text{power balance mismatch} &> \epsilon \ \text{AND} \ k < \text{maximum iteration limit } \textbf{do} \\ & \text{update} \ v[k+1] \ \text{using} \ (1) \ \text{with} \ v[k], \psi[k], x_c[k] \\ & \textbf{if} \ \mathcal{G} \ \text{is not radial } \textbf{then} \\ & \text{update} \ x_c[k+1] \ \text{using} \ (3) \ \text{with a Newton step} \\ & \text{update} \ \psi[k+1] \ \text{using} \ (2) \ \text{with} \ v[k+1], \psi[k], x_c[k+1] \\ & \text{k} \leftarrow k+1 \end{split}
```

Two-Bus Power Flow

The F_{μ} -invariant set $\mathcal{A}_{\epsilon}^{-}$

- $F_{\mu}: \mathbb{R}^2 o \mathbb{R}^2$ characterizes the algorithm update rule
- ullet $k_1^-, k_2^- \geq 0$ related to loading margins
- If μ is sufficiently small, then there exists $\epsilon_1,\epsilon_2>0$ such that

$$\mathcal{A}^-_{\epsilon} \coloneqq \{\xi: |\psi| \le k_1^- + \epsilon_1, |x| \le k_2^- + \epsilon_2\}$$
 is F_u -invariant

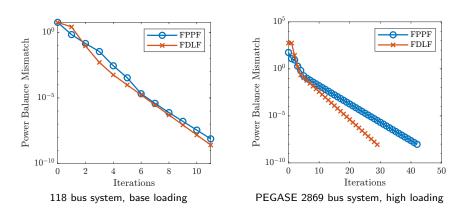


Main theoretical result: Two-bus power flow solvability

For sufficiently small μ , F_{μ} is a contraction on $\mathcal{A}_{\epsilon}^{-}$, so

- ullet the unique high-voltage soln. is in \mathcal{A}_{ϵ}^-
- ullet FPPF always converges to this soln. from any $\xi_0 \in \mathcal{A}_{\epsilon}^-$

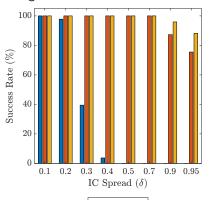
Numerical Results I: Convergence

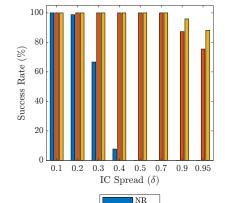


Conclusion: linear convergence, similar rate to the Fast-Decoupled Load Flow

Numerical Results II: Sensitivity to Initialization

- Goal: test algorithm success rate (%) under random initial load bus voltage magnitudes, generated uniformly from $[1 \delta, 1 + \delta]$
- Higher success rate as δ increases \implies more robust





30 bus system, high loading

118 bus system, high loading

The End

Contact: liangjie.chen@mail.utoronto.ca

